382 research outputs found

    Communication-Efficient Federated Bilevel Optimization with Local and Global Lower Level Problems

    Full text link
    Bilevel Optimization has witnessed notable progress recently with new emerging efficient algorithms, yet it is underexplored in the Federated Learning setting. It is unclear how the challenges of Federated Learning affect the convergence of bilevel algorithms. In this work, we study Federated Bilevel Optimization problems. We first propose the FedBiO algorithm that solves the hyper-gradient estimation problem efficiently, then we propose FedBiOAcc to accelerate FedBiO. FedBiO has communication complexity O(ϵ1.5)O(\epsilon^{-1.5}) with linear speed up, while FedBiOAcc achieves communication complexity O(ϵ1)O(\epsilon^{-1}), sample complexity O(ϵ1.5)O(\epsilon^{-1.5}) and also the linear speed up. We also study Federated Bilevel Optimization problems with local lower level problems, and prove that FedBiO and FedBiOAcc converges at the same rate with some modification.Comment: arXiv admin note: text overlap with arXiv:2205.0160

    Compositional Federated Learning: Applications in Distributionally Robust Averaging and Meta Learning

    Full text link
    In the paper, we propose an effective and efficient Compositional Federated Learning (ComFedL) algorithm for solving a new compositional Federated Learning (FL) framework, which frequently appears in many machine learning problems with a hierarchical structure such as distributionally robust federated learning and model-agnostic meta learning (MAML). Moreover, we study the convergence analysis of our ComFedL algorithm under some mild conditions, and prove that it achieves a fast convergence rate of O(1T)O(\frac{1}{\sqrt{T}}), where TT denotes the number of iteration. To the best of our knowledge, our algorithm is the first work to bridge federated learning with composition stochastic optimization. In particular, we first transform the distributionally robust FL (i.e., a minimax optimization problem) into a simple composition optimization problem by using KL divergence regularization. At the same time, we also first transform the distribution-agnostic MAML problem (i.e., a minimax optimization problem) into a simple composition optimization problem. Finally, we apply two popular machine learning tasks, i.e., distributionally robust FL and MAML to demonstrate the effectiveness of our algorithm.Comment: 21 pages, 8 figure

    How to Train Your Dragon: Tamed Warping Network for Semantic Video Segmentation

    Full text link
    Real-time semantic segmentation on high-resolution videos is challenging due to the strict requirements of speed. Recent approaches have utilized the inter-frame continuity to reduce redundant computation by warping the feature maps across adjacent frames, greatly speeding up the inference phase. However, their accuracy drops significantly owing to the imprecise motion estimation and error accumulation. In this paper, we propose to introduce a simple and effective correction stage right after the warping stage to form a framework named Tamed Warping Network (TWNet), aiming to improve the accuracy and robustness of warping-based models. The experimental results on the Cityscapes dataset show that with the correction, the accuracy (mIoU) significantly increases from 67.3% to 71.6%, and the speed edges down from 65.5 FPS to 61.8 FPS. For non-rigid categories such as "human" and "object", the improvements of IoU are even higher than 18 percentage points
    corecore